рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основные сведения о микропроцессорах

Основные сведения о микропроцессорах - раздел Приборостроение, Элементная база электроники   История Развития Современных Средств Вычислительной Техники Н...

 

История развития современных средств вычислительной техники насчитывает около 50 лет, однако, за этот период уже сменилось четыре поколения ЭВМ, существенно отличающихся друг от друга своей элементной базой.

Первое поколение ЭВМ составляли громоздкие системы на электронных лампах. ЭВМ первого поколения не отличались высокой надёжностью и имели быстродействие порядка нескольких десятков тысяч операций в секунду. Применение дискретных транзисторов в ЭВМ второго поколения значительно повысило их надёжность и быстродействие (до сотен тысяч операций в секунду). Элементную базу ЭВМ третьего поколения в основном составляли цифровые ТТЛ - микросхемы малой и средней степеней интеграции, что обеспечивало их достаточно высокую надёжность и быстродействие на уровне миллиона операций в секунду.

Степень интеграции цифровой микросхемы определяется количеством размещённых в ней логических элементов (ЛЭ). К микросхемам малой степени интеграции (МИС) относят микросхемы, содержащие не более десяти ЛЭ, к средней степени интеграции (СИС) – с числом ЛЭ в пределах 10—100. Микросхемы большой степени интеграции (БИС) содержат 100—1000 ЛЭ, сверхбольшой (СБИС) – 1—10 тысяч ЛЭ, сверхсверхбольшой степени интеграции (ССБИС) – 10—100 тысяч ЛЭ на одном кристалле.

Переход к ЭВМ четвёртого поколения был достигнут не только благодаря заметному прогрессу в области схемотехники и технологии производства микросхем. Весьма важным для дальнейшего развития вычислительной техники явилось создание в 70-ых годах новых универсальных цифровых микросхем, так называемых микропроцессоров (МП) – разновидности БИС, способных выполнять полный перечень функций центрального процессора ЭВМ. С появлением микропроцессоров отпала необходимость для каждого нового применения проектировать новую ИС. Вместо этого можно было взять готовый микропроцессор, разработав для него новую программу для выполнения требуемых функций.

Спектр возможных применений микропроцессоров оказался настолько широким, что построенные на их основе различного рода микропроцессорные системы сбора и обработки информации, управления и контроля технологическими процессами и тому подобные стали проникать почти во все отрасли человеческой деятельности – от научных исследований и производственной сферы до медицины и повседневного быта. Микропроцессоры позволили разрешить казавшиеся ранее несовместимыми требования резкого увеличения скорости обработки информации и объёма памяти и столь же резкого снижения размеров, стоимости и энергопотребления ЭВМ. Вслед за первыми однокристальными МП было освоено массовое производство нескольких видов микропроцессорных комплектов и наборов, представляющих собой совокупность совокупность микропроцессорных и других микросхем номенклатура и количество которых необходимы и достаточны для построения любого конкретного изделия вычислительной и управляющей техники. На их основе были созданы многочисленные персональные ЭВМ (ПВЭМ), впервые появившиеся на рубеже 80-ых годов, а также совершенно новый класс мало потребляющих компактных машин – микрокомпьютеров, быстродействие которых почти не уступает настольным вариантам, но их размеры и масса таковы, что они вполне помещаются в небольшом чемоданчике.

Эволюция архитектуры микропроцессоров пошла по нескольким различным направлениям, в результате чего появились следующие их классы:

простые однокристальные 4- и 8- разрядные контроллеры, относительно невысокой производительности, для применения в бытовых приборах и небольших подсистемах;

быстродействующие секционные комплекты микропроцессорных БИС для создания ЭВМ произвольной разрядности с наращиваемой системой команд;

мощные однокристальные 16- и 32- разрядные ССБИС микропроцессоров с фиксированной системой команд для персональных ЭВМ, производительность которых приближается к возможностям полупрофессиональных и малых ЭВМ;

специализированные процессоры цифровой обработки, предназначенные для ускоренного выполнения арифметических операций и алгоритмов спектрального анализа сигналов;

аналоговые процессоры – устройства с аналоговым входом и выходом, внутри которых вся обработка сигналов ведётся в цифровом виде.

Построенные на основе универсальных и с специализированных микропроцессоров средства вычислительной техники относят к ЭВМ четвёртого поколения. Они представляют собой многопроцессорные и многомашинные комплексы, отличающиеся высокой надёжностью и быстродействием (десятки миллионов операций в секунду).

До недавнего времени появление каждого следующего поколения ЭВМ в основном связывалось с созданием новой элементной базы. Отличительной чертой перехода к ЭВМ пятого поколения считается разработка новых конфигураций центральных и специализированных микропроцессоров, а не применение новой элементной базы, поскольку ССБИС микропроцессоров использовались ранее и в составе ЭВМ четвёртого поколения. В настоящее время выпускается много модификаций перспективных высокопроизводительных 32-разрядных МП, на основе которых построены некоторые модели микрокомпьютеров, относящиеся по реализованным в них идеям к ЭВМ пятого поколения.

Совершенствование микропроцессоров шло параллельно с развитием микроэлектронной технологии, позволяющей размещать в одном кристалле всё большее и большее количество транзисторов. Достигнутое можно проследить на примере семейства МП фирмы «Intel», до настоящего времени прочно удерживающей лидирующие позиции в этой области. Это семейство началось с выпущенного впервые в 1971 г. 4-разрядного МП Intel 4004, выполненного на 2300 n-МОП транзисторах и ориентированного на применение в микрокалькуляторах. Значительно более совершенный 8-разрядный МП Intel 8080 (Отечественный аналог – МП КР580ВМ80А) был выпущен в 1974 году и уже содержал примерно 4500 транзисторов. В 1978 году на основе высокоплотной n-МОП технологии выпускается 16- разрядный МП Intel 8086 (отечественный аналог МП МК1810ВМ86) на 29000 транзисторах. На МП этой серии впервые были построены широко распространённые во всём мире ПЭВМ серии IBM. Наконец к началу 1986 года на основе совместного использования экономичных КМОП - схем и отличающихся более высоким быстродействием n-МОП схем был создан перспективный 32- разрядный МП INTEL 80386, содержащий до 275000 транзисторов. В этой связи также отметим разработанный фирмой «Hewlett Packard» 32- разрядный МП Focus, выполненный на 450000 транзисторах на МОП – кристалле. Такая высокая степень интеграции была достигнута путём существенного снижения (до 1.5 микрометра по ширине и 1 микрометра для интервалов между соседними областями) размеров транзисторов. Одновременно производительность МП выросла более, чем на три порядка.

В 1989 году фирма «Intel» сообщила о разработке ещё более совершенного МП i486DX. Одним из важнейших событий 1991 года вполне можно считать появление нового МП i486SX, производительность которого примерно на 40% превышала показатели лучших образцов МП Intel DX/SX. С начала 90-ых годов 32- разрядные МП стали широко использоваться для производства на их основе портативных компьютеров (типа ноутбук или лэптоп), однако обычные микросхемы i386DX/SX не полностью отвечали требованиям разработчиков. Для удовлетворения этих требований в 1990 году фирмой «Intel» был разработан экономичный вариант МП i80386SL, который содержал 885 тысяч транзисторов. Это позволило создавать на площади, ненамного превышающей размеры игральной карты, 32- разрядные весьма миниатюрные компьютеры. Последующая разработка этой фирмы (1992 год) МП i486SL представляла собой, пожалуй, самый производительный процессор серии SL. По производительности этот процессор не уступает i486DX, но благодаря пониженному напряжению питания (3.3 В) и высокой экономичности только за счёт использования нового МП среднее время автономной работы компьютера блокнота (около трёх часов) увеличивается примерно на один час. С марта 1993 года начались промышленные поставки новейшей версии МП, объявленного ранее как 586 или Р5, но зарегистрированного корпорацией «Intel» под торговой маркой Pentium. Новая микросхема была выполнена по 0.8- микронной КМОП – технологии и содержала около 3.1 миллиона транзисторов. Современные персональные компьютеры, построенные на базе МП Pentium, полностью совместимы со 100 миллионами ПЭВМ, использующих МП Intel 8086, 8088, 80286, 80386 и i486.

Отметим, что повышение производительности процессоров всегда сопровождается существенным увеличением мощности потребления энергии. Так, первые МП версии Pentium с кодовым названием Р54С, при производстве которых была использована 0.6- микронная КМОП – технология, что позволило снизить мощность рассеивания МП до 4 Вт при напряжении питания 3.3 В. Количество транзисторов в этих микропроцессорах было увеличено до 3.3 миллиона. С 1995 года фирма «Intel» объявила о начале коммерческих поставок микропроцессоров Pentium Pro, число транзисторов основного кристалла которого составляет примерно 5.5 миллиона. Внутренняя архитектура этого процессора оптимизирована для работы с 32- разрядными приложениями, где он существенно опережает даже самые быстродействующие модели Pentium. Корпорации «Intel» – совместно с фирмой «Hewlett-Packard» в 1998 году разработали совершенно необычный процессор Р7 с базовой 64- разрядной архитектурой и быстродействием до 1 миллиарда операций в секунду.

На рисунке 3.38 представлена базовая конфигурация современной микропроцессорной системы (МС), ядром которой служит центральный процессор, выполненный на основе БИС МП. Помимо МП в состав любой МС также входит и ряд вспомогательных устройств: устройства ввода/вывода (УВВ) и запоминающее устройство (ЗУ), без поддержки которых даже самый современный МП практически бесполезен. В ЗУ хранятся последовательности двоичных кодов управляющих программ и набора данных необходимые МП для выполнения обработки информации, а УВВ обеспечивают его взаимодействие с внешними устройствами.

 

Рис. 3.38. Базовая конфигурация современной микропроцессорной системы

 

В свою очередь, ЗУ может включать в себя постоянное запоминающее устройство (ПЗУ), обеспечивающее хранение управляющих программ и набора исходных данных для организации процесса обработки информации, а также оперативное запоминающее устройство (ОЗУ) – для хранения изменяющейся части обрабатываемой информации. Некоторые специализированные МП снабжаются внутренней памятью (для хранения программ и данных) и встроенными УВВ, называемыми входными/выходными портами. Для таких МП требуется минимальное количество внешних вспомогательных микросхем, и они идеально подходят для недорогих МС. Обычно их называют однокристальными компьютерами.

Особо отметим наличие в МС трёх типов шин (данных, управления, адреса), каждая из которых выполняется в виде набора проводников, связывающих основные элементы МС между собой. По шине данных передаются двоичные сигналы, соответствующие кодам данных и команд управляющих программ. МП определяет устройство – источник данных (откуда их нужно считать) и их получателя или приёмник (куда надо записать данные) и передаёт по шине управлениясоответствующие сигналыо направлении передачи информации. Наконец, шина адреса служит для указания места расположения данных, по ней МП передаёт двоичный код соответствующей ячейки памяти (откуда взять или куда записать двоичный код, передаваемый по шине данных). Как правило, все неиспользуемые в данный момент вспомогательные устройства в составе МС переводятся в «третье состояние», обеспечивающее их отключение от шин.

 

– Конец работы –

Эта тема принадлежит разделу:

Элементная база электроники

Московский государственый университет приборостроения и информатики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основные сведения о микропроцессорах

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

В.В. Филинов, А. В. Филинова
    Электроника и основы измерений   Учебное пособие

Утверждено
Ученым советом МГУПИ в качестве учебного пособия предоставлено кафедрой электротехника и электроника ИС-7 МГУПИ, Зав.кафедрой д.т.н., проф. Шат

Полупроводниковые материалы
  Работа полупроводниковых приборов основана на использовании электрических свойств материалов, называемых полупроводниками. По электропроводности полупроводники занимают про

P-n-переход и его свойства
  В p-n-переходе концентрация основных носителей заряда в p- и n-областях могут быть равными или существенно различаться. В первом случае p-n-переход называется симметричным, во второ

Полупроводниковые диоды
Полупроводниковым диодомназывается прибор, который имеет два вывода (приставка "ди-" означает два) и содержит один p-n-переходов. Все полупроводниковые диоды можно раздел

Биполярные транзисторы
Биполярным транзистором называется полупроводниковый прибор, имеющий два взаимодействующих между собой р-n-перехода. Технология изготовления биполярных транзисторов может быть разл

Полевые транзисторы
Полевым транзисторомназывают полупроводниковый электропреобразовательный прибор, ток которого управляется электрическим полем и который предназначен для усиления электрической мощн

Тиристоры
Тиристоры– это полупроводниковые приборы с тремя или более p-n-переходами, которые имеют два устойчивых состояния и применяются как мощные электродные ключи. Тиристоры име

Интегральные схемы
Микроэлектроника –это направление электроники, позволяющее с помощью комплекса технологических, конструктивных и схемотехнических средств создавать малогабаритные, высоконадежные и

Система обозначений полупроводниковых приборов и интегральных микросхем
Современные отечественные полупроводниковые приборы и интегральные микросхемы обозначают кодом, состоящим из букв русского алфавита и цифр. Первый элемент обозначения полупроводник

Параметры и характеристики усилителей
Основным параметром усилительного устройства является его коэффициент усиления. В соответствии с разделением усилителей на усилители напряжения, тока и мощности различают:

Принцип работы усилителя
Усилительные устройства предназначены для усиления переменных сигналов и, в частности, синусоидальных сигналов, подаваемых на вход усилителя. Наличие одного только усилительного элемента (

Усилители напряжения с общим эмиттером
(Усилительный каскад с коллекторной нагрузкой)

Эмиттерный повторитель
Малое Rвх и высокое Rвых сопротивления является недостатком УОЭ, не позволяющим к его входу подключать высокоомных источник входного сигнала и низкоомное нагрузочное устройств

Усилительный каскад на полевом транзисторе
Большое распространение получили усилительные каскады на полевых транзисторах, так как они обладают значительно большим входным сопротивлением по сравнению с усилительными каск

Истоковый повторитель
Усилительный каскад, аналогичный эмиттерному повторителю может быть построен на полевом транзисторе, называется каскад истоковым повторителем. Схема его приведена на рис.2.11.

Усилители мощности
Рассмотренные ранее усилительные каскады обеспечивают получение на выходе сигналов, мощность которых значительно выше мощности входных сигналов, однако, основным показателем работы этих каскадов яв

Многокаскадные усилители
  Рассмотренные выше однокаскадные усилители имеют, как правило, коэффициент усиления порядка нескольких десятков или сотен единиц. Однако, в реальных устройствах промышленной электро

Усилитель постоянного тока
  Для многих практических задач необходимо усиливать медленно изменяющиеся во времени электрические сигналы, являющиеся сигналами низкой частоты (в автоматике, системах управления и с

Обратные связи в усилителях
Конструирование различных электронных устройств на основе ОУ производится с использованием обратных связей. Обратной связью (ОС) называется передача части энергии выходного сигнала

Операционный усилитель
Операционный усилитель с отрицательной обратной связью наиболее часто применяется на практике (см. рис.2.21). Отрицательный характер ОС обусловлен подачей U1 на инвертирующий вход ОУ, та

Избирательный усилитель
  Рассмотренные выше схемы усилителей предназначены для усиления входных сигналов в широкой полосе частот.

Генераторы электрических сигналов
Генераторы гармонических сигналов предназначены для преобразования энергии источника питания в энергию электрического сигнала синусоидальной формы требуемой частоты и мощности. На

Источники питания электронных устройств
  Для работы различных электрических устройств необходимы источники электрической энергии (источники питания) постоянного напряжения. Преобразование переменного напря

Однополупериодный выпрямитель
Схема и временные диаграммынапряжений и токов однополупериодного выпрямителя приведены на рис.2.31. схема содержит Тр, в цепь вторичной обмотки которого включены последовательно, диод Д и сопротивл

Сглаживающие фильтры
Выпрямленное напряжение имеет пульсирующий характер и его нельзя непосредственно использовать для питания электронных устройств. Поэтому для уменьшения коэффициента пульсаций на входе выпрямителя п

Внешняя характеристика выпрямителя
  Внешней характеристикой выпрямителя называют зависимость напряжения на нагрузочном устройстве от тока в нем UН = ƒ(IН). Наличие такой зав

Стабилизаторы напряжения
Уменьшение напряжения нагрузки UН при изменении потребляемого тока IН (рис.2.35) или из-за изменения температуры является нежелательным явлением, т.к. снижают надежность работ

Амплитудой импульса А
длительностью импульса tи обычно определяемой на уровне 0,1 А; длительностью фронта импульса tф – временем нарастания импульса от 0,

Электронные ключи и простейшие формирователи импульсов
  В состав многих импульсных устройств входят электронные ключи. Основу любого электронного ключа составляет активный элемент (полупроводниковый диод, транзистор, операционный

Импулсьный режим работы операционных усилителей
  Интегральные операционные усилители (ОУ) находят широкое применение в импульсной технике. Передаточная характеристика ОУ имеет вид рис.3.15, соответствующий передаточной характерист

Логические элементы. Серии цифровых интегральных схем
  К цифровым интегральным микросхемам относятся устройства, с помощью которых преобразуются и обрабатываются сигналы, выраженные в двоичном или другом цифровом

Триггеры
  Одно из наиболее распространённых импульсных устройств, относящимся к базовым элементам цифровой техники, — триггер (от англ. trigger — спусковой крючок). Триггером

Счетчики импульсов
  Подсчёт числа импульсов является наиболее распространённоё операцией в устройствах цифровой обработки информации. Повышенный интерес к таким устройствам объясняется их высокой точно

Регистры, дешифраторы, мультиплексоры
Регистромназывают устройство, предназначенное для записи и хранения дискретного «слова» – двоичного числа или другой кодовой комбинации. Регистр – один из основных элемент

Преобразователи (ЦАП и АЦП)
  Поскольку информация на входах цифровых устройств обычно представляется в двоичном коде, а большинство исполнительных механизмов для автоматизированного управления технологическими

Характеристики измерительных приборов
Основными являются диапазон измерений, чувствительность, порог чувствительности, потребляемая мощность, погрешности. Диапазон измерений– область значений измеряемой величи

Системы электроизмерительных приборов
В приборах магнитоэлектрической системевращающий момент создается в результате взаимодействия постоянного магнита с проводником с током. Подвижной частью может быть рамка с током и

Условные обозначения на шкале приборов
При практическом применении приборов необходимо определить их пригодность к предстоящему измерению той или иной величины. Данные о приборе в виде условных обозначений указываются на их шкалах и при

Метод построения амперметров и вольтметров непосредственной оценки
  Магнитоэлектрический, электромагнитный, электродинамический измерительные механизмы можно применять для измерения тока (амперметр) и напряжения (вольтметр). При изменении т

Электронные приборы непосредственной оценки
Большое распространение, наряду с вышенаписанным, получили электронные приборы для измерения тока и напряжения. Рассмотрим основные принципы построения электронных вольтметров.  

Измерение мощности в цепях постоянного тока и активной мощности в цепях переменного тока
Измерение мощности в цепях постоянного токавозможно косвенным методом при помощи амперметра и вольтметра, так как

Методы построения приборов сравнения (компенсации)
  В большой группе измерительных приборов реализуется метод сравнения измеряемой вели­чины с ее мерой (мерой называется образец, представляю­щий собой техническое средство, служащее д

Измерение параметров электрических цепей
Основными параметрами элек­трических цепей являются: для цепи постоянного тока со­противление R, для цепи переменного тока активное сопро­тивление

Измерения электрических величин цифровыми приборами
Цифровыми измерительными приборами (ЦИП) называются приборы, автоматически вырабатывающие дискретные сигналы измерительной информации, т. е. показания которых представлены в цифро­

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги